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It is shown that the pair correlation function (which is by definition the high- 
density factor in the revised Enskog theory) is not always a well-defined func- 
tional of the local density. Moreover, for a finite system with periodic boundary 
conditions and in the space homogeneous case, this function, computed at the 
contact value, is bounded at the maximum allowed density (i.e., a density nma x 
such that, in one dimension, 1/a-1/L<~nmax< l/a; equality sign, which 
corresponds to the usual close-packing density for which L/a is an integer, being 
included as a particular case). At least for the one-dimensional gas model this 
finite value is shown to approach infinity in the thermodynamic and in the 
hydrodynamic limits. A new form for the revised Enskog equation, which does 
not depend on the inverse conjecture, is finally given. 

KEY WORDS: Kinetic theory; Enskog equation; dense gases; inverse 
problem; close-packing density. 

1. I N T R O D U C T I O N  

It is well known/1'2) that the Bol tzmann  equat ion  (BE) provides a success- 

ful description of gases as long as the proper volume of the molecules is 
very small, but  that it ceases to be valid in the case of dense systems. 

The first a t tempt  to generalize Boltzmann-l ike arguments  to higher 
densities is due to Enskog, (3) who proposed in 1921 a kinetic equat ion  

(SEE) for the one-particle dis t r ibut ion function in a dense gas of hard 
spheres. Two effects were taken into account:  first, the covolume effect 
increasing the collision frequency, and second the collisional transfer 

leading to an ins tan taneous  flow of significant interest in t ranspor t  
phenomena.  

1 Dipartimento di Matematica, Politecnico di Milano, 20133 Milano, Italy. 
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Van Beijeren and Ernst (4) showed that Enskog's procedure has to 
be modified in order to obtain results which are not in conflict with 
irreversible thermodynamics (in fact, the Onsager symmetry relations do 
not hold for the SEE): an H-theorem for this revised Enskog equation 
(REE) was derived by R~sibois (s'6) and an analogous theorem for a dense 
gas of rough spheres was obtained by Cercignani and Lampis~7~; the REE 
was also shown (8'9) to admit a local H-theorem. Recently several existence 
theorems for the Enskog equation (EE) under several assumptions on the 
high-density factor have been given. (1~16) None of them applies to the REE 
as first derived by Van Beijeren and Ernst and indeed it appears that a 
rigorous analysis of the high-density factor is required before a theorem for 
the latter equation can be obtained. 

The aim of this paper is to study some mathematical assumptions 
underlying the high-density factor for the REE: in particular, the so-called 
inverse conjecture, ~17'j8) which may fail for a system of hard spheres. As a 
consequence of this, in Section 3 it is noticed that the high-density factor 
is not always a well-defined functional of the local density. 

Another quite separate problem here examined is the following. 
Mathematical results on the EE which are available in the literature distin- 
guish, in a sense, between the finiteness (s' 10,11.16) and the infiniteness (12, 15,16) 

of the external system in which the gas is confined. However, in both cases 
the high-density factor is implicitly assumed to be a monotone increasing 
function (resp., functional in RET) of the local density, becoming infinity 
at the close-packing density. The validity of this second conjecture for the 
REE is also examined in Section 3. In particular, for a finite system with 
periodic boundary conditions and in the space homogeneous case, it is 
shown that the high-density factor is bounded at the maximum allowed 
density (i.e., a density n .. . .  such that, in one dimension, 1/a-  1/L -~ nma x < 
l/a; equality sign, which corresponds to the usual close-packing density for 
which L/a is an integer, being included as a particular case). At least for the 
one-dimenSional gas model this finite value is shown to approach infinity 
in the thermodynamic and hydrodynamic limits. This is done in Section 4. 

A new form for the REE (which does not depend on the inverse 
conjecture) and a few open questions raised by our analysis are finally 
discussed in Section 5. 

2. T H E  R E V I S E D  E N S K O G  E Q U A T I O N  

The SEE describes the time evolution of the one-particle distribution 
function fl(r~, vl; t): 

f l ( r l ,  Vl; t): A x R 3 x R + ~ R +  (2.1) 



Inverse Conjecture for Revised Enskog Equation 365 

which gives at time t the number density of particles at point r~ with 
velocity Vl. Here A is a measurable subset of R 3 representing the external 
volume in which the gas is confined: as previously said, A may be R 3 itself 
as well as a proper (bounded or unbounded) subset of R 3. 

The above-mentioned equation is written 

@ t  ~ ~f l  . a l l  _ jE (2.2) 

where F is the external force per unit mass, assumed to be such that 
(c?/c~v).F=0, and jE  is the collision operator, which differs from 
Boltzmann's in two respects: first, because it takes into account that the 
centers of the molecules are, at a collision, at a distance of a sphere 
diameter and second, because the frequencies of these collisions are 
modified by the covolume effect. 

Within Enskog's procedure we have for jE  

J E ( f l ,  f l )  = a2 fR3xS2 dr2 d28(8"  v12) O ( ~ "  v12) 

)] x Y n r l - ~ a a ; t  f l ( r l ,  v ] ; t ) f ~ ( r l - a a ,  v'2;t) 

[ ( 1  )] } 
- Y  n r l + ~ a ~ ; t  f l ( r l , v l ; t ) f 1 ( r l + a a ,  v2;t ) (2.3) 

Here a denotes the hard-sphere diameter; O is the Heaviside step function; 
is a unit vector, directed as the apsidal line, ranging over the unit sphere 

S 2 in R 3, o r  rather, because of the Heaviside function, over a half of such 
a sphere; v~2 = v~-v2 ,  v'l and v2 are the velocities after the collision: 

V i ~-- V 1 - -  ~(~" V12), Vl = V 2 "~- ~(~" V12 ) (2.4) 

and Y, the so-called high-density factor, is a function of the local density 
[see Eq. (2.22)3, calculated at the contact points r~_  �89 in particular, 
Y is assumed to be equal to unity for a rare gas, and to increase with 
increasing density, becoming infinity as the density approaches its close- 
packing value. (19) 

The original mathematical model due to Enskog was afterward 
modified by replacing the function Y with the correct pair distribution 
function g2 defined as a functional of the local density as in a nonuniform 
equilibrium state(4~; the result is a new collision operator given by 
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J E ( f l , f l ) = a 2  f dv2d2~.(~.'v12) O(e'v12) 
R 3 • S 2 

• [gz(rl,  rl - a~]n(t)) f l ( r l ,  r t) f l ( r ~  - a t ,  v~; t) 

- g z ( r , , r , + a ~ l n ( t ) ) f l ( r l , v l ; t ) f ~ ( r l + a ~ , v 2 ; t ) ]  (2.5) 

In this section we describe, following R6sibois' paper, (5) the derivation 
of the revised Enskog collision operator as given by Eq. (2.5), with the help 
of two assumptions: a physical one on the N-particle time-dependent dis- 
tribution function [-see Eq. (2.6)] and a mathematical one on the inversion 
of a functional equation [-see Eqs. (2.21) and (2.23)]. 

Concerning the first assumption, the hypothesis is made that, at all 
times, the reduced distribution functions of the system can be calculated 
from the following (grand canonical) distribution function: 

1 N N 

pN(t)=~..  ~I 6)0 [I Wi(t)/Z(t) (2.6) 
i > j = l  i = l  

where the normalization factor Z(t) is given by 

N N 

= 0 i > j = l  i = l  

Here A N is the Cartesian product of N copies of A and the following 
notations have been introduced: 

0 o = O ( r  o - a ) ,  r .  = I r , -  rjl 

W , ( t )  = W ( r i ,  v , ;  t)  

dI "N-" = dr ,+ l "'" drN dvn + 1 "" dVu 

(2.8) 

(2.9) 

(2.10) 

Conventionally, empty products in Eq. (2.7) are replaced by 1 and no 
integration is performed if dE N reduces to dE ~ 

The function W generates the reduced particle distribution functions 
according to the rule 

N! 
N~= di~N n p N ( t  ) (2 .  t l )  f , ( r ,  ..... r,,v~ ..... v , ; t ) =  = , ( N - n ) !  N .• .... , 

It is worth noting that we have not yet defined the function W(r, v; t): this 
is done by considering Eq. (2.11) for n = 1, 

f~(r,, v~ ; t ) =  f l ( r l  I W(t)) (2.12) 
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and by assuming that this equat ion can be inverted to express W as a 
functional 2 off1:  the validity of this conjecture is examined in Section 3. 

However,  to ensure that the approximate  PN is a probabil i ty density, 
we have at least to require W as nonnegative. As a consequence, we have 

1 + IIW(t)llx<~(t)<~exp II W(t)l[1 (2.13) 

[I f, ,(t) II 1 ~< (11 w(t)lF 1)" (2.14) 

Here for any arbi t rary measurable function h(rn+ 1 ..... rN, Vn+ l ..... VN; t) we 
put 

= ~  dI.N nlh(rn+ 1 ..... ru  ,vn+l, . . .  ' I Ih ( / ) l l l  JAN n u  ( 2 . 1 5 )  
• R 3 ( N - n )  

and we say that h(t)~Ll+(AN-nx R 3(N m, dEN-,) provided that h is, for 
any t, a measurable and nonnegative function such that ]lh(t)]l~ < oc (those 
h's which are equal almost everywhere are of course identified). 

Equat ions  (2.13) and (2.14) and the condit ion W~>0 now give 

W(t) ~ L I  (A x R 3, dF).~ 1 ~< ~( t )  < ~ (2.16) 

W(t )ELI (AxR3,  dF)~f~(t)eLI+(A"xR3",dF ") (2.17) 

For  this reason we require, in addition, that W(t)~ LI+(A x R 3, dF) and we 
consider Eq. (2.12) as a map  of L I ( A  x R  3, dF) in L I ( A  •  3, dF). 

It is also convenient  to define the quanti ty 

b . ( r  1 ..... r. I z(t))  

= oo 1 d r u "  1~ Ou I] W,(t) 2(0 (2.18) 
n (N--n)! s nxR3(N n) i > j = l  i = n + l  

where the nota t ion explicitly takes into account  that  bn depends func- 
tionally on W only through its spatial part  z(r; t) defined by 

= W(r, v; t) dv (2.19) z(r; t) JR3 

A simple calculation shows that 

bn(rl ..... r ,  I z(t))  ~ 1 (2.20) 

We can then rewrite Eq. (2.12) as 

f~(r l ,  v~ I W(t)) = W(rl ,  v~ ; t) b1(rl I z(t)) (2.21) 

2 The quantity f(x; t) depending functionally on W(x; t) for all x is written f(x I W(t)). 



368 Cannone and Cercignani 

and by integrating over v~ we find an analogous functional relation 
between z and the local density n defined by 

n(r; t )=  fRgfl(r, v; t) dv (2.22) 

The relation under consideration gives n in terms of z: 

n(rl Iz( t ) )=z(rl;  t) bl(rl [ z(t)) (2.23) 

and can also be regarded as a map of L I ( A ,  drl) in L~+(A, dr1), which is 
assumed ~5) to be invertible for any arbitrary density n(t)~L~+(A, dr1) to 
express, functionally, z in terms of n, i.e., 

z(r; t) - z(rln(t) ) (2.24) 

Taking now Eq. (2.11) for n = 2  we have 

f2(r l , r2,  vl, v 2 ; t ) = W ( r l ,  v l ; t )  W(r2, v2; t )bz(r l , r2lz( t ) )  (2.25) 

and combining this expression with Eq. (2.21), we get the closure relation 

f2(rl ,r2,  v ~ , v z ; t ) = g 2 ( r l , r 2 l n ( t ) ) f l ( r l , v ~ ; t ) f ~ ( r z , % ; t  ) (2.26) 

where g2 is defined by 

f2(rl ,  r2, Vl '  u t )  
g2(rl, r2 in(t)) = 

f~(rl, vl; t)f~(r2, v2; t) 

b2(rl, r2 I z(0)  
(2.27) z 

bl(rl [ z(t)) bl(r2 I z(t)) 

and g2 is written as a functional of the local density if the inverse conjecture, 
that is, Eq. (2.24), is valid. 

The collision operator given by Eq. (2.5) for the REE is now 
immediately obtained by inserting Eq. (2.26) into the first BBGKY 
hierarchy equation. 

3. T H E  I N V E R S E  C O N J E C T U R E  

Inspired essentially by Stell's methods (2~ involving formal series 
expansions, the inverse conjecture for the REE has been always considered 
to be true. (4'5'7'15) 

However, disregarding the dependence on time, n(r; t) given by 
Eq. (2.23) is precisely the same as the equilibrium single-particle density of 
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a system of hard spheres, under the influence of an external potential, and 
we know that, in this case, there are infinitely many densities such that the 
inverse conjecture fails. 

In fact, keeping in mind the correspondence rule 

we obtain(~7): 

r~---x (3.1) 

n(r; t) ~--- Q(x) (3.2) 

z(r; t) ~ exp[ - U(x)] (3.3) 

T h e o r e m  3.1. For any density n(r;t)eL~+(A, dr) (here time t is 
fixed) and for every set B(s; a/2) [where B(s; a/2) is the intersection of the 
external volume A in which the gas is confined with a ball of radius a/2 
centered at s e R3], a necessary condition for the existence of a function 
z(r; t)eLI+(A, dr), such that Eq. (2.23) holds, is 

fB n(r; t) dr ~< l (3.4) 
(s; a/2) 

Remark. Equation (3.4) has a simple probabilistic interpretation: if a 
given particle is in B(s; a/2), then, with probability one, all other particles 
are excluded. 

For H-stable systems in the grand canonical ensemble it has been also 
established(17,18) that: 

(i) If U(x) is a solution of the inverse problem, for a given 
Q c L is such that then U is unique. ~+(A, dx), and Z(U)<  o% 

(ii) If Q is any admissible density (i.e., there exists a solution for the 
inverse problem for ~), then ~' is also admissible provided that [[Q-Q'rll is 
sufficiently small. 

In our case, because of Eqs. (2.16) and (2.17), we thus have: 

T h e o r e m  3.2. The map given by Eq. (2.23) is, for any t, injective 
from L~+(A, dr) in L~+(A, dr). 

T h e o r e m  3.3~ The set of all admissible densities n(r; t) is, for any 
t, an open set in L~+(A, dr) (in the strong topology induced by the norm). 

In this section we first give a simple proof that the map n-= n(-lz) is 
locally surjective [see property (ii) with n = 0 and z = 0], but not globally, 
and then we study the same functional relation in the space homogeneous 
case. 
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T h e o r e m  3.4. If n(r; t) is in LI(A, dr) and if ]ln(t)l]l~< 1/8e, then 
there exists a unique z(r; t) in L~+(A, dr) such that Eq. (2.23) holds. (Here, 
as usual, e=~]k~  o 1/k!.) 

Proof. Let n(rl; t)eLI+(A, dr1), 
LI(A, d r l ) ~  L~+(A, dry) defined by 

and put 

]ln(t)l[~=R<~l/8e and ~p---~p.: 

n(rl; t) 
(p(z(r I ; t)) -- (3.5) 

bx(rl I z(t)) 

S -  {z(rl  ; t): ]lz(t)tl, ~< M(R)} 
X= SnLI+(A, drl) 

(3.6) 

(3.7) 

where M(R) is implicitly defined by R = M/4e T M  in the assigned interval 
0~<R~< 1/8e (and M is such that 0~<M~< 1/2). 

We prove the theorem by showing that q) is a contraction from the 
complete metric space 3 X in X. 

If we define 

l dFN-I  1-[ hl(rllz(t))= ( N - l ) !  ~, ,• 
N = I  i > j = l  

Eq. (2.18) gives 

h~(ra I z(t)) 
bl(r 11 z(t)) z(t) 

N 

o,j 1] wi(t) (3.8) 
i = 2  

(3.9) 

Integrating now Eq. (3.5) over rl, we find, with the help of Eq. (2.13), 

U~o(z(t))t] 1 ~< Ijn(t)]l i S(t)~ReM<Re2M=M/4<M (3.10) 

which shows that q~ is a well-defined map of X in X. 
Now we show that ~o is a contraction: 

I~o(z(t)) - q~(~(t))l = n(rl '  t) •(z(t)) ~(.~(t)) 
' h , ~ - ~ , ] ~ ) l  hl(rl  ~(tt) 

= n ( r  1 "t) ~(z(t))_--_~(2(t)) 
' hl(rllz(t) ) 

Z(2(t))l-hl(r112(0) -- hi(r1 t z(t))] (3.~1) 

3 In fact X is a close subset of Lt(A, dr1) in the strong topology. 
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making use of the inequalities 

hdr~ lz ( t ) )>~l ,  h~(r~ lY(t))~> 1 

Z(5(t))  ~< exp II~(t)ll ~ ~< e M 

(3.12) 

(3.13) 

and, as we will prove later, 
e M 

12(z(t)) - 2(s ~< IIz(t) - ~(t)ll ~ 

we obtain 

e M 
Ih~(r~ [ s  [z(t))[ ~< I]z( t ) -~( t ) l l l  

(3.14) 

(3.15) 

e M -t- e TM 
] q ~ ( z ( t ) ) - ~ o ( ~ ( t ) ) l  ~ < n ( r l ;  t ) ] ] z ( t ) - s  - -  ( 3 . 1 6 )  

M 

so that  integrating over r~ we arrive at the desired property:  

R(e i + e TM) 
I1 (O(Z( l) ) -- ( ~ O ( Z ( [ ) ) H I  ~ Hz( t) -- z ( t ) l l  1 

M 
1 

~< 5 ]]z(t) - Z(t)lr ~ (3.17) 

To  complete the proof, we have only to prove Eqs. (3.14) and (3.15). 
By definition, we have 

I ~(z( t ) )  - -~(~(t))l 

1 
dj~ N = 0 o, Wi( t  ) -  W,( t )  (3.18) 

i>j i = 1  i = 1  t 

then, recalling the elementary equality 

N N N 

l-I m i - -  U ~Vi= 2 m l " "  mJ l ( m j -  ~VJ) ~VJ+ 1' '" ~VN 
i = i  i = 1  j = l  

(here Wo = I~N+I = 1), we finally obtain 4 

[ 2 ( z ( t ) ) - 2 ( ~ ( t ) ) [  <~ Nz( t ) -~( t ) l l l  rlz(t)ll{ 1 Ile(t)llN-J 
N = 0  " = 

M N _ I  
]]z( t ) - -Z( t )[] l  N !  

N~O 
8 M 

= I l z ( t ) - 5 ( t ) l ] l ~  | (3.19) 

4 Equation (3.15) follows in the same manner. 

822/'63/1-2-24 
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Remark. It is possible to show O7) that the bound 1/8e may be 
replaced by 1 [for example, by increasing the Lipschitz constant in 
Eq. (3.17)] and that, although too limited to be of physical interest, the 
bound Iln(t)[ll~<l is in a sense optimal: in fact, for any constant C >  1, 
there are infinitely many functions n(r; t) in LI(A ,  dr) with IIn(t)Ha = C 
such that the functional inversion given by Eq. (2.23) is impossible [for 
example, all the functions in L~+(A, dr) with [[n(t)[ll = C and support in 
B(s; a/2), for which Eq. (3.4) does not hold]. We also remark that, up to 
now, we have only required A to be a measurable subset of R 3. 

Let us now examine the space homogeneous case, i.e., the case 
in which n(r;t)-n(t) .  First of all we notice that the condition 
n(t)EL~+(A, dr) now implies that the external system A is a measurable 
subset of R 3 with finite measure V; we think of the gas as confined in a 
box  T 3 with periodic boundary conditions, which can be identified, after 
rescaling, with the usual three-dimensional torus R3/Z 3. We also remark 
that n(t) is a constant, due to mass conservation. 

The main results we are going to prove are Theorem 3.7, concerning 
the inversion of Eq. (2.23), and Eq. (3.51) on the behavior of the pair 
correlation function g2 when the density approaches its maximum allowed 
value. 

Lemma 3.5. If, for a given t, n(r; t ) -n ( t )  and it is in ~ 3 L+(T , dr), 
then there exists an N' such that the series given by Eqs. (2.7), (2.11), and 
(2.18) are truncated at N'. 

ProoL If we let B = 34-It(a/2) 3 be the measure of a single sphere and 
N'= [ V/B], then we easily obtain 

N 
l-I 0 o - 0  VN> N' (3.20) 

i>/=1 

(Here, for x e  R, Ix]  denotes the largest integer <x.)  | 

Remark. The same property is true for R6sibois' H-function given by 

H ( t ) =  ~ I dFNpN(t) ln[N!pu(t)]  (3.21) 
N = 0 T 3N x R 3N 

because the external system T 3 is explicitly considered to be finite~ 5) 

I . emma 3.6. There exists an N~< N' such that VN> N we have 

~ u = 0  (3.22) 

fiN l(r l )  ~ '0  (3.23) 

~N 2(rl, r2) ~ 0 (3.24) 
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VN~< N we have 

aN>O 

3 N  l ( r l )  > 0  

~N 2 ( r l ,  r 2 ) ~ 0  

where the following notations have been introduced: 

N 

C~=fr3x dTu I-[ O0 
l > j = l  

N 

fiN- l(rl) = f  d ' / ? r  l-~ 
T3(N- I) i > j = l  

N 

r/N-2(rl, r2) = f d7 N-2  U 
T3('~ - 2) i>j= 1 

d7 N "=drn+l . . ,dr  N 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.31) 

and T 3(N n) is the product of N - n  copies of T 3, i.e., the usual 3 (N-n ) -  
dimensional torus. 

Proof. First of all we notice that the boundary conditions and the 
translation invariance of the Lebesgue measure imply that 

flN--l(rl)~flN--1 

~X 2(rl,r2)~t/N_2(lrl--r21) 

Then we observe that 

c~u+ 1 ~< Vc~N (N~> 0) (3.34) 

:~v=f dr l f lN_i=Vflu_l  (N/>I) (3.35) 
T 3 

fiN l = f  dr2 t/N-2(lrl-- r2]) (N>~2) (3.36) 
T 3 

Now if N is the greatest integer such that e~ > 0, we have, with the help 
of Eqs. (3.34)-(3.36), the required properties. | 

Remark. We observe that Eq. (3.36) only implies 

qN 2([rl--r21) = 0  a.e. (VN>N) (3.37) 

(3.32) 

(3.33) 

O~ (3.30) 

O~ (3.29) 
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However ,  

N 
tin e(Irl--rzl)=O21fAN_2dTN--2 [I 

/>y=3 
O U (3.38) 

where A is the subset of T 3 defined by 

zJ - A ( r l ,  r2)- -  { r e  T3: I r - r i l  ~>a Vi=  1, 2} (3.39) 

N o w  if we prove  that  the function g]N_2( l r l - - r2 ] )  is cont inuous (and 
decreasing) when [ r l - r2L  ~>a and obviously zero if I r~ - r2 [  < a ,  then 
Eq. (3.37) holds everywhere. 

In order  to prove that  t/N 2 is continuous,  let [r' 1 - r~l > ]r~ - r21 ~> a 
and let # denote  the Lebesgue measure  o n  R 3 (or rather  the measure  on T 3 
induced by the Lebesgue measure  o n  R3); then 

t/N- 2(Irl -- r2l) -- ~/N- 2(Ir] -- r~l) 

N N 

N 2 i> j=3  z/') N-2 i> j=3  

k=l  (A,)N 2 k(A\d,)k i> j=3  
N~2 ( N ;  2 ) 

[#(z~,)]N 2-k [ # ( A \ d , ) ] k  (3.40) 
k=l  

so if 

as also 

r ' l -  r~ ---, 0, r ~ - r 2 - - , 0  (3.41) 

we have 

~ ( A \ A ' ) ~ 0  (3.42) 

*/N-- z(trx -- r21)-- qN--2(Ir'l -- r~l) ~ 0 I (3.43) 

T h o o r o m  3.7.  If, for a given t, n(r; t)=-n(t) is in L~+(T 3, dr)  and 
0 <~n(t)< N/V, then there exists a unique z(r; t)=_ z(t) in 1 3 L+(T , dr)  and 
0 <~ z(t) < oo such that  Eq. (2.23) holds. 

ProoL We proceed in the opposi te  direction, i.e., we assume z(r; t) = 
z(t) and then we show that  Eq. (2.23) is, for any t, an ordinary  function 
which is bijective in the assigned interval. 
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Under these hypotheses [by virtue of Lemma 3.6 and of Eq. (3.35)1 
Eqs. (2.7), (2.18) (n = 1, 2), and (2.23) become 

~r 
~N 

2(z( t ) )=  ~ N.T [z(t)]N (3.44) 
N=O 

I{N~_ c~------E---N }/{N ~_ } bl(z( t ) )=~ 1 ( N -  1)! [z(t)]N--I N O~ N N o~.T [z(t)] (3.45) 

b2( l r l - rz l  Iz(t)) 

/iN 2 ( I r l - r = ] )  N--2 0{U 
= 2 ( N -  2)! [z(t)] -~. [z ( t )]  N (3.46) 

0 

= V [N=I (N--1)! [z(t)]N [z(l)] N (3.47) 
o 

The theorem now follows as soon as we prove that Eq. (3.47) is strictly 
monotone in the interval O<<,n(t)<N/V: as a matter of fact, a simple 
calculation shows that 

Vz(t) ~ = , ( N -  1)~ [z(t)]N o ~ [z(t)]N 

({2 "" }/{2 })' , ( N -  I)! [z(t)]N [z(t)]N 
0 

(<N2)oc  - 2 = < N ) o c  ) = < ( N -  <N)mc)2)oc  

and so we get the required property: 

(3.48) 

dn(t)>o I (3.49) 
dz( t ) 

By the same notation [here ( - - . ) o c  stands for the grand canonical 
mean value, i.e., ( . . . ) c c  = ZN=O ~ dFN( "'" ) ON(t)] we have 

<N)Gc 
n(t) V (3.50) 

In Appendix A a less standard derivation of Eq. (3.49) is given. 

Remark. It is simple to prove, with the help of Lemma 3.6 and 
Lemma3.5, that nm,x=:N/V is <I/B (in fact, nmax=~/V<~N'/V= 
[V/B]/V< l/B); therefore, the necessary condition given by Eq. (3.4) is 
verified. As stated in the remark after Theorem 3.4, the bound n(t)< r/ma x 
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is, once more, optimal. In fact, assuming without loss of generality that 
nmax ~ 1/B [in the one-dimensional case 0 < 1/a - Hma x ~ 1/L, see Eq. (4.4), 
so that the assumption is true in the thermodynamic limit] we easily see 
that if n ( t )>  1/B, then the functional inversion given by Eq. (2.23) is 
impossible because Eq. (3.4) does not hold. We also remark that nmax 
corresponds, physically, to the maximum allowed density of the system 
[-including the usual close-packing density as a particular case; see 
Eq. (4.4)]. 

Proposition 3.8. If, for a given t, n(r; t) - n(t) is in LI+(T 3, dr) then, 
in the interval O<<.n(t)<n . . . .  we have g2(rl, r2 l z ( t ) ) -g2 ( l r l - r2 l ln ( t ) )  
and 

: ~ - !  v ~ 
lim g2([r 1-r2[ [ n ( t ) ) ~ - -  (3.51) 

n ( t )  ~ nmax jV ~ 

Proof. By Lemma 3.6, by Theorem 3.7 [see Eqs. (3.45) and (3.46)], 
and by keeping in mind the correspondence n( t )~nr ,  axee'z(t)--* OO, we 
obtain g2(rl, r21 z(t)) _= gz(lrl - rzl I n(t)) and 

lim gz( l r l - r2 l ln ( t ) )  
n( t ) ~ nmax 

~ ' -  1 ~/:v 2 ( t r l - r 2 l )  V 2 

~ - I V  ~ 
~< - -  | (3.52) 

Remark. Equation (3.51) is at variance with the typical assumption 
made on the high-density factor even in the space homogeneous case. (2~) 

4. THE  O N E - D I M E N S I O N A L  CASE 

Let us now apply the results obtained in Section 3 in the space 
homogeneous case to the one-dimensional gas model consisting of inter- 
acting particles of length a moving on a periodic line T 1 of length L 
(identifiable with the one-dimensional torus R/Z). 

The great difference is that the integrals given by Eqs. (3.28)-(3.30) 
can be now carried out exactly because of the linear order which the hard 
cores impose. The results, as shown in Appendix B, are 

N 

~Jv=f dY s I 1 0 o = L ( L - N a )  u-1 (4.1) 
T N  t > j - - 1  
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N 

flu l = f  d7 u--~ [I O ~ = ( L - N a )  N-~ (4.2) 
T N 1 

t > J = l  

qN_2(a)= dTN 2 ~ O~ =(L_Na)N 2 (4.3) 
T N 2 

i > j =  1 X l 2 = a  

where, in Eqs. (2.8), (3.31), and (3.33), r~ is replaced by x~ for all i. 
In the present case one can also prove that _N, as given by Lemma 3.6, 

is equal to N', as given by Lemma 3.5, i.e., is such that 

L __L 1 ~ ? ~ < -  (4.4) 
a a 

[in fact, c ~ > 0 ~ = - L - N a > 0  and cr = 0 r  1)a~<0] and that 
the exact vaue of the function g2 calculated for the maximum allowed 
density [which includes the usual close-packing density L =  (.N+ 1)a] at 
the contact point x12=a  [see Eqs. (3.52), (4.1), and (4.3)] is 

N ' - I  L 
lim g2(a[n(t))= - -  - -  (4.5) 

.(,} . . . . . .  .g L -  Ra 

and so, using twice Eq. (4.4), we get 

lim g2(aln(t))>>--- 
n( t )  ~ nma x 

N ' - I L  
- > N - 1  (4.6) ~- a 

which shows that the usual assumptions made on the high-density 
factor (19'21) at the close-packing density become true, at least for the one- 
dimensional model in the space homogeneous case, if we let N(L, a) go to 
infinity [i.e., if either L ~ oo or a -* 0; see Eq. (4.4)]. 

Four  possible limits suggest themselves: 

(1) The so-called (5} strict thermodynamic limit (limT): L ~ o o ,  
( N ) G c  --* 0% and (N)Gc/L < oo. 

(2) The thermodynamic limit (1iraTe): L --* oo. 

(3) The hydrodynamic limit {2'22) (limH): t, X scaled with the diameter 
a, a ~ 0 ,  ( N ) G  c ~ o% and a(N)G c< oo. 

(4) The free gas limit (limHo): t, X scaled with the diameter a and 
a ~ 0 .  

In both cases we get the results 

lim( lim g2(aln(t)))= oo (4.7) 
T n ( t )  ~ nmax 
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lim( lim g2(aln(t)))= oo (4.8) 
Too n ( t )  ~ nmax  

lim( lim g2(aln(t)))= oo (4.9) 
H n ( t )  ~ nmax  

lim( lim g2(aln(t)))= oo (4.10) 
H 0 n ( t )  ~ nma x 

Remark. We notice that ( N ) ~ c  ~ r  when n(t)~r/ma x [see 
Eq.(3.50)]. This implies that if now L ~  o% then ( N ) G c - *  o0 and 
(N)Gc/L  --* 1/a (and, resp., a ~ 0 =~ ( N ) o  c ~ oo and a ( N ) o  c ~ L). In 
other words, Eqs. (4.7) and (4.8) [resp. (4.9) and (4.10)] have the same 
meaning if we take first the maximum allowed density limit. This does not 
happen if we interchange the order in these limiting processes (in fact, e.g., 
limi~ g2> 1 and limn0g2= 1, see below). Moreover, if this is done, 
Eqs. (4.7), (4.9), and (4.10) become 

lim (lim g2(aln(t)))= oo (4.11) 
n ( t )  ~ nma  x T 

lim (lim gz(aln(t)))= oo (4.12) 
n ( t )  ~ nrnax H 

lim (lim g2(aln(t)))= 1 (4.13) 
n ( t )  ~ nmax  H 0  

In order to prove Eqs. (4.11) and (4.12), it is sufficient to observe that, by 
means of the notation introduced after Eq. (3.49), gz(aln(t)) may be 
written as follows: 

L I N ( N -  1)\  (4.14) 
g2(a[n(t))- ( N ) 2  c \ L - U a  / ~ c  

In Appendix C we show that 

so that 

L - N a  / ~ c  >~ 
( N ( N -  1))Gc 

(4.15) 
(L  - Na)oc  

L ( N ( N -  1))~e 
g2(a]n(t)) >~ - -  2 (N)Gc  ( L - - N a ) o c  

( N 2 ) G C  - ( N ) ~ c  L 
2 ( N ) ~  c L -  a ( N ) o c  

>~ 1 L - a ( N ) ~ c  

[here, as in Eq. (3.49), we have used the fact that ( N  2) ~> (N)2] .  

(4.16) 
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Taking now the strict thermodynamic limit (limT) [i.e., L ~  oo, 
( N ) ~  c --* o% ( N ) ~ c / L  ~ 1/ao(t), ao(t) > a]  and the hydrodynamic limit 
(limH) [i.e., t and x scaled with a, a - , 0 ,  <N)oc--*  o% a ( N ) o c - - ,  
Lo( t )<L  ] we obtain [if these limits exist as in, e.g., the canonical 
ensemble (6) where Eq. (4.16) holds with the equality signs] 

1 
lim g2(al n(t)) >1 (4.17) 
v 1 - a/ao(t ) 

and 

1 
lira g2(aln(t)) >1 (4.18) 
H 1 - Lo(t)/L 

so that we finally get 

and 

lim (lim g2(aln(t)))= oe (4.19) 
n ( t ) ~ nmax T 

lim (lim g:(aln(t)))= oo (4.20) 
n ( t )  ~ rZma x H 

(here lim.(,) . . . . .  is the maximum allowed density limit and means, respec- 
tively, lim~0(, ) ~ a and limL0(, ~ ~ L). | 

Let us now prove Eq. (4.13). We start from the remark that ~(z(t)) 
(and, likewise, bl and b2) may be written in the form 

L(L Na) u 1 [ z ( t ) ]  N 
3,(z(t)) = L z ( L -  ha) 

N = O  N !  

(4.21) 

where r(x) means zero for x~<0, unity elsewhere [i.e., in terms of the 
Heaviside step function, r ( x ) =  1 - O ( - x ) ]  and the series in Eq. (4.21) 
converges uniformly for any arbitrary a > 0, provided that z(t) and L are 
fixed (in fact, for any a > 0, ,7(z(t))< exp[Lz(t)]).  Hence, by a well-known 
theorem concerning the order in which limit operations are carried out, we 
obtain 

lira 3(z(t))= ~ lim z ( L - N a )  L ( L - N a ) N - 1  [z( t )]N_expELz(t)]  
a ~ O  N=O ~ 0  N! 

(4.22) 
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and, by the same arguments, 

lim b~(z(t))= lim b2(alz(t))= 1 (4.23) 
a ~ 0  a ~ 0  

which gives 
lim g2(aln(t)) = ! ( 4 . 2 4 )  
Ho 

and finally 

lim (lim g2(ajn(t)))= 1 (4.25) 
n ( t )  ~ nmax H0 

(here, as in Proposition 3.8, limn(,) . . . . .  means limz(,)~ ~). | 

Remark. Equation (4.25) is valid in the general space 
inhomogeneous three-dimensional case, as one can prove using the 
equalities 

N N 

lim ~ d'/N ~I O0 I~ zi(t) (llz(t)jll , = )N N~>0 (4.26) 
a ~ 0 J T 3 N  

i > j = l  / = 1  

N N 

l i m f  dTN-' H Ov I~ zi(t)=(llz(t)jla) N-l,  U>~l (4.27) 
a ~ O J T 3 ( N - I )  i > j = l  i = 2  

N N 

f dY ~-2 17 O o I ]  z~(t)=(llz(t)lll) N-2, U>~2 (4.28) lim 
a ~ 0  T3(N -2) i > j = l  i = 3  

(which follow from Lebesgue's monotone convergence theorem) together 
with the identity Z ~ = o f N  = ~2N=0 r( fu) fu"  

Concerning the thermodynamic limit (i.e., L --, oo ), at this time, we can 
only prove that 

1 + 2az(n(t)) + a2[z(n(t))] 2 _ 
. . . .  ~<lim g2(aln(t))<~ 1 + 2az(n(t)) (4.29) 
1 +3az(n(t))+3aZ[z(n(t))]2 r~ 

(if this limit exists; see, e.g., refs. 23 and 24), which gives the trivial 
inequality 

~< lim (lim g2(a]n(t)))<~ oo (4.30) 
n ( t )  ~ nmax Too 

[we know in fact that, for L s R +  and z ( t )~R+ fixed, g2(alz(t))>>. 1]. In 
order to prove Eq. (4.29), we observe that H6pital's rule implies that 

1 1 
~< lim bl(z(t) ) <~ - -  (4.31) 

1 + 2az(t) 7c~ 1 + az(t) 
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and 

1 1 
~< lim bz(alz(t)) <~ (4.32) 1 + 3az(t) + 3a2[z(t)]2 T~ 1 +2az(t) 

In fact, deriving k times with respect to L the numerator and the 
denominator of b l ( Z ( t ) )  , w e  obtain 

{ i (L-Na)N 1 k } 
N +1 ( N - l - k ) !  [z(t)JN-1 

b~(z(t))={s~ (L-ka)(L-Na)N-~-~ } (N-k)! [z(t)JN 

so that, letting k = N - 1  and taking lim infb~(z(t)) and lim sup b~(z(t)) as 
L goes to infinity, we finally get Eq. (4.31) and, by means of the same 
arguments, Eq. (4.32). | 

5. D I S C U S S I O N  

In the present paper the functional dependence on the local density of 
the pair correlation function g2 has been studied from a mathematical 
viewpoint with the purpose of showing how many details have to be spelled 
out before one can start talking about existence and uniqueness theorems 
for the REE. 

In particular, the usual (4) formal Mayer cluster expansion 

g2(rl,r21n(t))=Olz ( k _ 2 ) !  ~ ~ d7 k-2 IF[ n,(t) Vk(1213-- -k  ) (5.1) 
k = 2  Ak-2 i = 3  

[here nk(t)=n(rk;t ) and Vk(12[3.--k) is the sum of all graphs of k 
labeled points which are biconnected when the Mayer factor f12= O 1 2 -1  
is added; see ref. 20] has been shown to be not defined when the local den- 
sity does not satisfy Eq. (3.4) (the latter bound, in the space homogeneous 
case, corresponds, physically, to maximum allowed density). 

Another difficulty presented here is that one cannot write the high- 
density factor in RET in a sufficiently self-contained way even in the space 
homogeneous case; one should take either the thermodynamic or the 
hydrodynamic limit (but this has never been said explicitly in many places, 
to the best of our knowledge). As a matter of fact, it has been proved that 
the high-density factor for a finite system (V<  oe) of interacting particles 
of finite diameter ( a > 0 )  is bounded at the maximum allowed density, 
contrary to a well-known assumption. (19':1) 
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Concerning the first point in this section, we briefly discuss the deriva- 
tion of a new possible form for the REE without making use of the inverse 
conjecture. 

The idea is to write Eq. (2.2) with the collision operator given by 
Eq. (2.5) for the new function W(r 1, vt; t); in fact, now the pair correlation 
function is correctly written as a functional of the local "fugacity" z(rl ; t). 

Equation (2.2) now becomes 

-k- v~ 
c?t 

OWb~(. ]z)+ F .  ~Wbl(. ]z)=jE(mb~(" ]z), Wb~(. Iz)) 
Orl ~V1 (5.2) 

In general, 

NI(rl,vlIW(t))EL~+(AxR3, d F ) ~  W(rl,vl, t ) eL~(AxR3 ,  dF) (5.3) 

but, recalling Eqs. (2.16) and (2.17), 

W(rl,vl, t)~L~+(A• d F ) ~ I < . Z ( W ( t ) ) < ~  (5.4) 

and 

W(rl, Vl, t)E LI+ (A x R 3, d r ) ~  f l ( r l ,  v I Im(t))~ LI+ (A x ~R 3, dr) (5.5) 

As a consequence, it seems natural to take L 1 (A x R 3, dF) as the functional 
space for this REE. 

In closing, we present some open questions raised by our analysis: 

(1) Is Eq. (3.4) a sufficient condition in Theorem 3.1 (see refs. 17 and 
18)? Is Eq. (3.4) a necessary and sufficient condition for the convergence of 
the formal sum given by Eq. (5.1)? What condition replaces Eq. (3.4) in the 
thermodynamic and hydrodynamic limits? 

(2) Is it possible to extend the results obtained in Section 4 to the 
space inhomogeneous (or homogeneous) three (or two )-dimensional case? 
To this end, we notice that one of the difficulties is to calculate exactly ~N 
and rIN_2(a ) t-as in Eqs. (3.28) and (3.30)] for an arbitrary integer N. Of 
course if N = 0 ,  1,2 (resp. N = 2 , 3 )  the integrals given by ~N [resp. 
t/N 2(a)] can be easily carried out, with the results 

~o = t ( 5 . 6 )  

~1 = V (5.7) 

ct2= V(V-v(a))  (5.8) 

r/2 2(a)= 1 (5.9) 

q3 2(a) = V -  ~2 v(a) (5.!0) 
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[where v(a)=4~za 3 is the volume of the protection sphere (2) and 
(19/12) v(a) is the total volume of two protection spheres whose centers are 
at a distance equal to a];  in the two-dimensional case, Eqs. (5.6) (5.10) are 
still valid once the replacements 

19 4 
V~---'S=p(T2)' v(a)'~-s(a)=lra2' 12 - - ~ +  (5.11) 

are made. 

(3) Is it possible to interchange the limit processes in Eq. (4.8)? (See 
ref. 23 and, for the one-dimensional case, ref. 24). 

(4) Does g2(xl2ln(t)) become, at the maximum allowed density, a 
Dirac distribution concentrated at x~2=a + in the thermodynamic and 
hydrodynamic limits? 

A P P E N D I X  A 

In this Appendix we present an equivalent derivation of Eq. (3.49). By 
a direct calculation we get 

~p2~ t K dn(t) ~1~O+~K=1 SK[z(t)] 
d z ( t )  = v ( s ( z ( t ) )  2 (A.1) 

where Z(z(t)) is given by Eq. (3.44) and sK is defined by 

K ~ 2 N - - K + I  K + I  
SKZN~ =oN! ( K - N ) !  ~N+I~K N-~- T 0~K+ 1 0~0 (A.2) 

Equation (3.49) now follows as soon as we prove that VK= 1, 2,..., 
2 ~ -  1 

~ i 2 N - K +  1 
u=o N! ( K - N ) !  O~N+ IO~K--N~O (A.3) 

In order to prove Eq. (A.3), we have only to take its symmetric part, i.e., 
we let M = K -  1 - N and thus 

K-1 2 N - K +  1 
u~oN! (K--N)! O~N+IO~K--N 

K 1 - - 2 M + K - -  1 

= ~ ( K _ I _ M ) ! ( M + I ) ! C ~ K  M~M+~ M=0 

1K-I  ( 2 N - K + 1 )  2 
=~N~_o(N+I)!(K_N)!~N+IO~K_N>/O | (1 .4 )  
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A P P E N D I X  B 

In this Appendix we prove the identities (3.53)-(3.55). We start with 
Eq. (3.54): because of the translation invariance of the Lebesgue measure 
o n  R N 1 and because of the linear order x2 < x3 < ... < XN which the hard 
cores impose we get 

flN--~=/3N ~ l x ~ = o = ( N - - 1 ) ! f  & N-~ (B.1) 

where t2 is the subset of R ~ ~ defined by 

~r~ = { ( X 2  ' X3 , . . .  ' X N ) ~ R  N- 1:a<x2 ' X N < L _ a  ' 

a < x , + l - - X i < L - - a  Vi=2,  3 ..... N - l }  (B.2) 

and so we obtain 

i, L-a ;7  .~ flu * = ( N - -  1) ! dxN d x N _ , " "  dx2 
N 1)a N 2)a  

= ( L _ N a ) N  1 (B.3) 

If we now let N~> 1, then Eq. (3.53) follows from Eq. (3.35) [of course 
Eq. (3.53) is still valid if N =  0]. 

Let us now prove Eq. (3.55): once more the translation invariance of 
the Lebesgue measure on R N-2  and the linear order X 3 < X 4 < ' ' ' < X N  

imply that 

YIN 2 ( a )  = q N - 2 ] x l  = 0  
x2=a 

dXu dXx _ I "'" dx3 
= ( N -  2)! N--  1)a N 2)a  a 

= (L - Na)  u 2 (B.4) 

This completes the proof. | 

Remark .  We note that ~ is a subset of R N - 1  without periodic 
boundary conditions but including these conditions implicitly [see 
Eq. (B.2)]. For  example, the function O,j regarded on [0, L]  means zero 
for 0 ~< x~ < a and L -  a < x o. <<, L,  unity elsewhere, to take explicitly into 
account the correspondence [0, L]  ~ T ~, i.e., the fact that the position 
variables must be understood modulo L; A [-see Eq. (3.39)] is, on the con- 
trary, a subset of T 3 with periodic boundary conditions. 

We also remark that the most general method used for evaluating 
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multiple integrals of this type [Eqs. (3.53)-(3.55)] is that attributable to 
Gfirsey. (25) However, in Gfirsey's paper the integration is not performed on 
the one-dimensional torus T 1, but on the real interval [0, L]  under the 
boundary assumption that the walls behave like particles, identical with 
those of the system, fixed at x = 0  and x =  L, so that the integration 
domain actually reduces to [a, L - a ]  without periodic boundary condi- 
tions [this implies, among other things, that C~N= [ L - - ( N +  1)a] x and 
that fin 1(Xl) is no longer constant, contrary to an explicit statement of 
R6sibois(5)]. 

A P P E N D I X  C 

In this Appendix we prove the inequality 

u(w---!)\ > (c.1) 
( N ( N -  l ) ) o c  

L - N a  /GC ( L - N a ) o c  

where 

N ( N -  1) \  

T2-- a/oc 

( N ( N -  1)}Gc 

(L - Na }oc 

and CN is given by 

= N ( N -  1) CN CN (C.2) 
o L--Na o 

ZN:oN(N - 1) CN 
- ( c . 3 )  

L EN=O( - Na) CN 

L ( L -  Na) N-1 [ z ( t ) ]  N 
CN = (C.4) 

N! 

As we will prove, Eq. (C.1) is valid in the general case, i.e., when C N is, for 
any N, an arbitrary positive constant. 

A simple calculation shows that Eq. (C.1) holds ~:~ 

N = 0  j = O  L - j a  
N 

>~ ~ ~ j ( j -  1) CjCN_j (C.5) 
N = 0  J - - 0  

1~ N 
~ aCjCN_jJ(J-1)(2j-N)>~O (C.6) 

N=O j=o L - j a  
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In order  to prove Eq. (C.6), it is sufficient to show tha t  

N 

Su = ~" CjC~v-_:J(J-1)(2j--N)>~O V N = 0 ,  1 ..... ~r (C.7) 
.i=o L - j a  

In fact, t ak ing  the symmetr ic  par t  of SN, we obta in  

SN=21~ C:CN jV  L - j a  + (N-j)(N-j-1)(N-2j)] (C.8) 
:=o  L - ( N - j ) a  

and 

j ( j - 1 ) ( 2 j - N )  ( N - j ) ( N - j - 1 ) ( N - 2 j )  
+ 

L -  ja L -  ( N -  j )a  

( 2 j -  N) 2 [ ( L - j a ) ( N - j ) + L ( j -  1)] >~0 (C.9) 
(L - j a ) [ L -  ( N - j ) a ]  

which completes  the proof.  I 
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